Culture-Independent Metagenomic Surveillance of Commercially Available Probiotics with High-Throughput Next-Generation Sequencing
نویسندگان
چکیده
Millions of people consume dietary supplements either following a doctor's recommendation or at their own discretion to improve their overall health and well-being. This is a rapidly growing trend, with an associated and expanding manufacturing industry to meet the demand for new health-related products. In this study, we examined the contents and microbial viability of several popular probiotic products on the United States market. Culture-independent methods are proving ideal for fast and efficient analysis of foodborne pathogens and their associated microbial communities but may also be relevant for analyzing probiotics containing mixed microbial constituents. These products were subjected to next-generation whole-genome sequencing and analyzed by a custom in-house-developed k-mer counting method to validate manufacturer label information. In addition, the batch variability of respective products was examined to determine if any changes in their formulations and/or the manufacturing process occurred. Overall, the products we tested adhered to the ingredient claims and lot-to-lot differences were minimal. However, there were a few discrepancies in the naming of closely related Lactobacillus and Bifidobacterium species, whereas one product contained an apparent Enterococcus contaminant in two of its three lots. With the microbial contents of the products identified, we used traditional PCR and colony counting methods to comparatively assess our results and verify the viability of the microbes in these products with regard to the labeling claims. Of all the supplements examined, only one was found to be inaccurate in viability. Our use of next-generation sequencing as an analytical tool clearly demonstrated its utility for quickly analyzing commercially available products containing multiple microbes to ensure consumer safety. IMPORTANCE The rapidly growing supplement industry operates without a formal premarket approval process. Consumers rely on product labels to be accurate and true. Those products containing live microbials report both identity and viability on most product labels. This study used next-generation sequencing technology as an analytical tool in conjunction with classic culture methods to examine the validity of the labels on supplement products containing live microbials found in the United States marketplace. Our results show the importance of testing these products for identity, viability, and potential contaminants, as well as introduce a new culture-independent diagnostic approach for testing these products. Podcast: A podcast concerning this article is available.
منابع مشابه
Strategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملThe Application of Metagenomic Approaches in the Management of Infectious Diseases
Over the past decades, although billions of dollars has been invested and much progress has been made in the prevention and surveillance of infectious diseases, the mortality caused by these diseases is still hovering at high level. Infectious diseases are constantly threatening lives of millions of people around the world. For the diagnosis of these diseases, traditional culture-dependent meth...
متن کاملGenome analysis An Informative Approach on Differential Abun- dance Analysis for Time-course Metagenomic Se- quencing Data
Motivation: The advent of high-throughput next generation sequencing technology has greatly promoted the field of metagenomics where previously unattainable information about microbial communities can be discovered. Detecting differentially abundant features (e.g., species or genes) plays a critical role in revealing the contributors (i.e., pathogens) to the biological or medical status of micr...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملComputational challenges of sequence classification in microbiomic data
Next-generation sequencing technologies have opened up an unprecedented opportunity for microbiology by enabling the culture-independent genetic study of complex microbial communities, which were so far largely unknown. The analysis of metagenomic data is challenging: potentially, one is faced with a sample containing a mixture of many different bacterial species, whose genome has not necessari...
متن کامل